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In the present paper the possibility is investigated of using the equations
of the applied theory of benling plates to calculate stress concentrations.
The asymptotic expansion of the solution of the corresponding problems of
elasticity theory obtained in [1] is utilized. It is shown that in & number
of cases the calculation of stress concentrations on the basis of the applied
theory 1s possible.

1. We consider a thin plate of thickness 24 , bounded by a cylindrical
surface T, , We allow the plate to have a hole bounded by the cylindrical
surface T, (Fig.1}. We shall assume that the distance between I, and T,

is sufficiently large in comparison with
the thickness of the plate, At the same
time we assume that the diameter a of
the hole 1is also considerably larger than
the thickness of the plate. The surface
', of the plate 1s loaded by some system
o% forces which 1s statically equivalent
to zero, while the plane surfaces T, of
the plate are stress-free, In this case,
as is known, a stress concentration occurs

at T, .
The methods of calculating the stress
Fig. 1 concentrations in such problems on the

basis of the applied theory heve been
treated in a number of works. A summary of the results may be found in [2].

The basic purpose of the present paper 1s to elucidate the connection
between .he relations of the applied theory and the exact solution of the
corresponding problem in elasticity theory.

We note that by the applied theory of bending of a plate we mean the theo-
ry based on the relationships
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where w(x,y) is the displacement of points of the middle surface of the
plate, which is a biharmonic function determined by the Kirchhoff{ boundary
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conditions, F 1is the elastic modulus, ¢ 1is Polsson's ratio, and 4 1is
the Laplace operator.

2. We introduce, as in [1] dimensionless coordinates s8,, nr,
(Fis? .1) connected with T, . We denote the forces acting on T, by Nl(sh 0,
sty 8)s Z1 (s, o) In [1] 1t was shown that the state of stress of a solid
plate bounded by the surface T, and subjected to the aforementloned forces
may be represented in the following form for sufficlently small 1\ = a:

o 1 anp 1 a 3¢ aRy’ 3y
°©__9
6"1 —..ph{[-v 0'12 {*(V——i)( + 1{1 Rl 6n1+1113n1 Rlz Tsf)]c—

02
o) e TBE Y L o S 15,041 01 x

p=1
/ a . 3a?
X (1— n1m+ m? g ) Cpg (1) X
(o0} 3 2 ,
a
P 1 +2pk2{ Z sins L 77 A [bkl(sl) (1— '“ZR - np? 8RE— )]S. X
k=0
Sy - 3a?
XeXpT—’—-(V—i)ZSp(g) [( anR +n1 SR‘ )Cp3(81)+
p=1

+ : ( R nldsl +- ) Pz(sl)]e’(p + Zn (C)TP[TP< —”12'%;+

11a2 1 62 Tpt
+ ny? 8:‘“ ) €13 (s1) - |—( BT —I " gRE '11-556‘__12+"') cm(sl)]}exr, I;‘l_:_“
2.1)
. o] 1% 1 adp 1 aR 3y 2
35, = 21h {[ (ulzosl TH T G ™ R ) 0= “amJC—
1 1Ay | 1 a dAY aRy AP\ [°
‘(V+ 3)7‘2 (/1,2 Bsit +111 Ry Omi +1118'“ A le) z_}+
[se]
. 3a? Tpl
+2ua (v —1) Z sp(§)< — 55 ZR -+ 12 SR s -+ . .)cm(sl)exp*—a—l—f—
o " / 32 )
a a , 0@ k"
+ 2pd 1-— Z mcskC“ [,“ (sl)U—-n,z—RT»}-nrgE—z—,..)]SlexpT—J,-

3 2
+(v—1) Z sp(g)[(1—nlz'1’—ﬂ+n128—;l;_. . .)cm(sl)+
p=1

1 a? o2 Ty
+ z,—p (—— M IRE T M G5 + .. ) Cpo (s])] exp —5— -+ (2.2)
1 a o a 9 .r n
. 1
+ i F DO (- g mtga ) gaEen

p=1



On the determination of stress concentrations

729

2 Ry 05 I, 9n0sy

° 1 6% 1 a oJ¢ 1y,. g ANY
tn‘lsl = 2"“’ {(’V + 1) C (111 ()Ih()Sl T HR, _) - (‘V '!— T{) )»" 2 (][1 ()nldé]

1 oo‘ a 3a? Splty]
K Ii _dA_\IJ)} + 2uA {—— >_15k sin s g (1 — R - "1225_1?15—' ) by (s)exp ——;'—} -+

k=0
(e o]
1 a a 3a? a
4 2pA? { Z sin 5,0 [m Iy (l — myg + nﬁS—RP —.. ) byy (s1) — 3¢ (1 - My 4-
k=0
Aa? a e 1 0t :ﬂ
) b () = (= g ey g ) B0 e 4

a q3a2 ! Tp"]
+ i11 2 'rpnp(g)[ p‘,(sl)(l — 2771+ "CERE T '):L; exp } 4 ...

A
p=1 (2.3)
a 3a? Yol
=20 (1 =) £¢ + 2n }] @) (1—"1 2 T Mg —) ¢yalsr) exp = +
p=1
o0 = ’
1 a 3a? 7 5A
+ 2p}&{ E 71, €08 5,4 lb’“ (s1) (1 -~ Mg -+ nq? §hp— - )Js exp—5— 4+
k=0
hoid a 3a2
+ Z (0 [T,, (1 —myg +migpa—.. ) Cpg (51) +
dal i 02 Tplt
+( R TMERR T M T e H .)cm ('“1)] CXPT} T 2.4
\ 1 0AY 3a?
t8.2=2”";‘2(1_§2)]-_{173 Z;LA,lekcosskg(l——nlzR + ny? 8hp— )x
k=0
Oy & a 5a? 1 9
% by, (s1) exp —k}v—l- + 2pAt {_‘ 2 c0S 3,5 [(——-Z—R—l -+ m BRA—™MT Fop 4 .. ) by (1) +
k=0

2

a 3a Oty
-+ 5/:(1 — 2—If—1+"12m‘_‘ . .)bk,_,(sl) expT+

a 3at ! Tpiy
_ " Ty 9
+ 2 Hl r (g)[ o (81) (1 —m 3 -+ "1281{12 .. ')]s. exp — } T (2.5)

a 3a- Tphy
3.0 =2k ) £, (2) (1 — gty ) €ya (s1) exp ——+

p=1
o a , 3a? \
+2P-}V2 2 tp (:) [(1— nl.z_”—l-i'"rgi{_li-'--/ cps("‘l)"l‘
p=l1 )
1 a? a2 Tpnl a
- :‘To (—— MZRE T M Gt +4.. ) L (s])] exp T+ . (I[; =1+ ”‘E) (2.6)

Here A, (31) is the radius of curvature of the external contour. All of
the remaining notation 1s explained in [1 and 3]. We recall only that
Vv (s, ,r“) 1s a certain biharmonic function represented by the series
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P {s1, 7)) = P {550 7)) -+ APy (s, 1) + Ao (s, ) + - - -

where §,{s1,n; ) is the solution of the problem of bending of a solid plate
given by the applied theory. The functions Y;(sy, ny), by; (s1), and ¢pi (s,) are
determined by the boundary conditions on T, from a certain infinite system
of linear algebraic equations.

It follows from (2.1) to (2.6) that if n, is sufficiently large in abso-
lute value, i.e, at a sufficiently great distance into the plate from T,
{in practice about two to three plate thicknesses), then we need consider
only the blharmonic state of stress, and hence we may assume that withip the
plate the state of stress is determined by Formulas
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We note that Formulas {(2.7) differ from (1.1) only by terms of higher
order In )\ .
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Since for the time being we have assumed that the plate does not have a
hole, thé stresses acting on the surface T, , according to (2.7), are
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where the quantitles n,, s, and R, refer to I, (Fig,1).

In order to free I', of stress it 1s necessary to remove the stresses
(2.8) to {2.10), 1.e. %o superimpose on {2.7) th. state of stress correspond-
ing to the solution of the problem of elasticity theory for an infinlte plate
with & hole T, on which the stresses have the values —OC,, — Ty — Ty
given by (2.8} to {(2.10). It is understood that the state of stress must be
compatiable, 1.e. the plane boundaries T, of the plate must remain free of
stress and the state of stress must disappear for large n, . Below we will
call this state of stress the reflected state, for short. The reflected
state of stress is also derived by the method explained in [1]. Consequently,
this state of stress will have the form [1]
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where y*(8,, n,) 1s a biharmonic function having the form
P* (s, ) = Yg* (52, ng) -+ M (syy ng) -- A%, (85, ny) 4- . ..
The boundary values for ¥,*(s,, n,) and the functions
bt (s (i=1,2,..), i (s2) (=234,

are determined from an infinite system of linear algebraic equations [1].
The boundary conditions for y,*(s,, n,) are given by the relations
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For determining the functions ka (50), r‘],); (s;) we make use of the equations
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It follows from (2. 17), (2.18) and (2.21), if it is noted that the state

of stress given by ¢,*(s;, ny) must vanish at infinity, that y,*(s;, n,)
is the solution of the applied theory which frees T, of the stresses deter=-
mined by’ sa, n; and which corresponds to zero s%ress at infinity. We
will call t%is soclution for short, the reflected solution of the appliad
theory. Furthermore, from (2. 17), {2.20) and (2.22) there follows a very
important fact: the right-hand side of the system {2.20) reduces to zero
in the present case, hence it follows, as was shown in [1], that all

¢}, (59 =0, while the bf, (s;), determined from (2.19) are in the general case
diiferent from zero. Therefore the state of stress on the contour T, for

= 0 1is glven by Formulas

Ny

(2.21)

on =0, + 0,0 =2 fe [ 2o 4+ 0 — 1) (5 + 7 ) | 0+ ¥ —

oo

3 92 . **
—(v+3)mE o, r i N sinogny ) +
K==Q
+ov—1) 2 $p Q) ey (s2) + D) 1, (0 170 (S")}+ =0 ¢z
p=1 p"

= °+° = ZPA'{ ‘[2" 3322 R ai,,) r(v— )dnz](‘p-*—‘p*)_

@ CB a *
(v+ 3)7” (daz’TRz 0"2)A(¢+¢)}m—u+
+ 2u2? { 2 2 sin csgbm {s)+ (v—1) 2 s (g)rm (sz)} . 2.24)

k=0



734 0.K. Aksentian and I.1. Vorovich

s = o Sy = WM ) € (5 T ) O 9 —
— (v + ‘3“) C; (an:(,sz -1% _aa?z) AW+ w*)},h:o + 2pd { - }i 0y Sin 3, b, s (s,)} +
+ z;m{ 2 sin st [ S b (59 — oybes @]} + .. = 0 (2.29)
T = Tas Tt = 2N — 1) 5 A O+ ) g+
+ 212 S coss,zh (o9 + 2 Yo @ ¢pn @)} + ... =0 (2.26)

k=0
Yoz = Ts.; + Ts,: = 2uvA (1 — 03 ;9_.;“ ASUR D ‘" =0

— 2uh ¥ 0,080, Lbyy (sa)+2p7»2{ Zcoschg[ 77, bt (s2) +-04b, > (sz)]} L. (2.27)

k=0 k=0

5, =0,° + 0,* = 2u} 2 1,0 epy (s)) + - .. (2.28)
p=1

The relation (2.24) shows that the stress o, on I'; has the form
Oy = Oy b - GuA% + 0 A% + . .. (2.29)

where the term o¢,;X <corresponds to the solution of the applied theory.

Thus the error in determining the stress ¢, according to the applied
theory has at least the next higher order of magnitude in A than the stress
itself. This conclusion is important, since very often the stress concentra-
tion coefficient around the hole ls determined by the value of o,

The stresses «r  and r,, in the exact solution are zerc on T,. However,
the applied theory glves nonzero values for them in the general case, Thus
we have here the well-known situation in which the boundary conditions on
the tangential stresses are not satisfied. These boundary conditions are
satisfied in the applied theory only in the sence of Kirchhoff. Nevertheless,
this circumstance still allows the exact asymptotic determination of the
stress o,, &s shcwn here.

The case of «1,, 1s somewhat more complicated. From (2.27) we obtain for
Tl‘l

a
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where the first term corresponds to the solution of the applied theory. From
(2.30) it 1s clear that in the general case r1,, 1s actually of the first
order in . in the exact solution, while at the same time it is assumed in
the applied theory that «,, 1s a second order In x . Thus the applied
theory here introduces an error in the order of the quantity consldered.

Furthermore, the stress ¢, 1s equal to zero according to the applied
theory, while in reality it is of second order in

From the preceding remarks i1t follows that if the stress concentration at
T, 1s determined not on the basis of o, , but according to any composite
characteristic of the state of stress containing 1, {for example, the
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maximum stress), then the use of the applied theory may entail an error of
the same order in 1\ as the quantity itself, characterlizing the stress con-
centration.

We now conslder the question in what cases the term of first order in
in the expression for «,, vanishes, Obviously the necessary and sufficlent
condition for this 1is that all p,*(s;) be equal to zero. From (2.19) 1t
follows that in this case
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Substituting (2.31) into (2.18) and taking note of (2.21) and (2.22), in
thlis case we obtain
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from which it follows that the solution of the applied theory must satisfy
the boundary conditions for r,, and r,, separately, and not only in the
sense of Kirchhoff.

Note that under these conditions cp; (s)=0(p=1,2,3,...).

The calculation of the stress concentration on the basis of the applied
theory for a reinforced hole 1s very important from the practical point of
view,

Very often the calculation of the reinforcing ring 1s also carried out on
the basis of the applied theory of bending of plates (4]. It is clear from
the preceding that the applied theory may provide an asymptoticaliy correct
value of the concentration coefficlent (if it 1s determined from the stress
0, ) only in the case where the width of the reinforcing ring is several
times greater than its thickness. If however the width of the reinforcing
ring is comparable to or even less than its thickness, then in that case the
edge effects associated with the rotational and potential stress fields in
the reinforcing ring will not be damped. The possibility of using the applied
theory in that case must be further investigated. In exactly the same way,
it is also necessary to consider the case where the state of deformatlon in

the reinforcing ring 1s described on the basis of Kirchhoff's theory of thin
rods.
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